142,065 research outputs found

    Experimental analysis of the Strato-rotational Instability in a cylindrical Couette flow

    Full text link
    This study is devoted to the experimental analysis of the Strato-rotational Instability (SRI). This instability affects the classical cylindrical Couette flow when the fluid is stably stratified in the axial direction. In agreement with recent theoretical and numerical analyses, we describe for the first time in detail the destabilization of the stratified flow below the Rayleigh line (i.e. the stability threshold without stratification). We confirm that the unstable modes of the SRI are non axisymmetric, oscillatory, and take place as soon as the azimuthal linear velocity decreases along the radial direction. This new instability is relevant for accretion disks.Comment: 4 pages, 4 figures. PRL in press 200

    Height fluctuations of a contact line: a direct measurement of the renormalized disorder correlator

    Full text link
    We have measured the center-of-mass fluctuations of the height of a contact line at depinning for two different systems: liquid hydrogen on a rough cesium substrate and isopropanol on a silicon wafer grafted with silanized patches. The contact line is subject to a confining quadratic well, provided by gravity. From the second cumulant of the height fluctuations, we measure the renormalized disorder correlator Delta(u), predicted by the Functional RG theory to attain a fixed point, as soon as the capillary length is large compared to the Larkin length set by the microscopic disorder. The experiments are consistent with the asymptotic form for Delta(u) predicted by Functional RG, including a linear cusp at u=0. The observed small deviations could be used as a probe of the underlying physical processes. The third moment, as well as avalanche-size distributions are measured and compared to predictions from Functional RG.Comment: 6 pages, 14 figure

    The energy transport by the propagation of sound waves in wave guides with a moving medium

    Get PDF
    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity. This article gives the calculation of the energy transport in the wave guides.\ud \ud It is shown that it is not possible to gain energy from infinity

    Distribution of velocities in an avalanche

    Full text link
    For a driven elastic object near depinning, we derive from first principles the distribution of instantaneous velocities in an avalanche. We prove that above the upper critical dimension, d >= d_uc, the n-times distribution of the center-of-mass velocity is equivalent to the prediction from the ABBM stochastic equation. Our method allows to compute space and time dependence from an instanton equation. We extend the calculation beyond mean field, to lowest order in epsilon=d_uc-d.Comment: 4 pages, 2 figure

    Ablation sensor Patent

    Get PDF
    Ablation sensor for measuring char layer recession rate using electric wire

    On neutrino and charged lepton masses and mixings: A view from the electroweak-scale right-handed neutrino model

    Get PDF
    We present a model of neutrino masses within the framework of the EW-νR\nu_R model in which the experimentally desired form of the PMNS matrix is obtained by applying an A4A_4 symmetry to the \emph{Higgs singlet sector} responsible for the neutrino Dirac mass matrix. This mechanism naturally avoids potential conflict with the LHC data which severely constrains the Higgs sector, in particular the Higgs doublets. Moreover, by making a simple ansa¨tzans\ddot{a}tz we extract MlMl\mathcal{M}_l {\mathcal{M}_l}^\dagger for the charged lepton sector. A similar ansa¨tzans\ddot{a}tz is proposed for the quark sector. The sources of masses for the neutrinos are entirely different from those for the charged leptons and for the quarks and this might explain why UPMNSU_{PMNS} is {\em very different} from VCKMV_{CKM}.Comment: 19 pages. Two figure

    From the arrow of time in Badiali's quantum approach to the dynamic meaning of Riemann's hypothesis

    Get PDF
    The novelty of the Jean Pierre Badiali last scientific works stems to a quantum approach based on both (i) a return to the notion of trajectories (Feynman paths) and (ii) an irreversibility of the quantum transitions. These iconoclastic choices find again the Hilbertian and the von Neumann algebraic point of view by dealing statistics over loops. This approach confers an external thermodynamic origin to the notion of a quantum unit of time (Rovelli Connes' thermal time). This notion, basis for quantization, appears herein as a mere criterion of parting between the quantum regime and the thermodynamic regime. The purpose of this note is to unfold the content of the last five years of scientific exchanges aiming to link in a coherent scheme the Jean Pierre's choices and works, and the works of the authors of this note based on hyperbolic geodesics and the associated role of Riemann zeta functions. While these options do not unveil any contradictions, nevertheless they give birth to an intrinsic arrow of time different from the thermal time. The question of the physical meaning of Riemann hypothesis as the basis of quantum mechanics, which was at the heart of our last exchanges, is the backbone of this note.Comment: 13 pages, 2 figure

    Micro-fabricated electromagnetic filters for millikelvin experiments

    Get PDF
    In this article we report on the design, fabrication and tests of micro-fabricated broadband filters suitable for proper electromagnetic thermalization of electrical lines connected to sensitive quantum electronics experiments performed at dilution fridge temperatures. Compared to previous such miniature filters, the new design improves on performance and reliability. These filters can be packed in space-saving cases with either single or multi-contact connectors. Measured performance in the accessible range compares well to simulations. We use these simulations to discuss the effectiveness of these filters for electromagnetic thermalization at 30 mK.Comment: Available at http://www-spht.cea.fr/articles/s06/03

    Iterative solution of a discrete axially symmetric potential problem

    Get PDF
    The Dirichlet problem for the axially symmetric potential equation in a cylindrical domain is discretized by means of a five-point difference approximation. The resulting difference equation is solved by point or line iterative methods. The rate of convergence of these methods is determined by the spectral radius of the underlying point or line Jacobi matrix. An asymptotic approximation for this spectral radius, valid for small mesh size, is derived
    corecore